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Random Convex Hulls:
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Recently B:ininy and Larman have shown that the volume of the convex hull of
a point sample taken uniformly within a convex body can be approximated by the
volume of a related "floating body." Here we show that, in the sense of sets, the
floating body and the expectation of the convex hull are close. As an immediate
consequence of the floating body as intermediary, we observe that the expectation
of the volume of the convex hull is approximately the same as the volume of its
expectation, an issue related to the Brunn-Minkowski inequality," 1993 AcademiC

Press. Inc.

I. INTRODUCTION

Beginning with the classic work of Renyi and Sulanke [6-8], the nature
of the convex hull of a collection of random points has been intensively
studied. A survey appears in Schneider [10]. Recently, Biminy and
Larman [3] have shown that, in the case of points selected uniformly
within a fixed parent body, the expected volume of the convex hull is
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closely approximated by the volume of a (non-random) "floating body."
The purpose here is to link up this result with the topic of random sets, in
particular, the idea of a set-valued expectation, for which background and
applications can be found in Artstein and Vitale [1], Aumann [2], Mecke
[4], Vitale [12-15], and Wieacker [16]. Our result is that the floating
body essentially coincides with the expectation of the convex hull. This is
of interest in view of the fact that the expectation is defined in completely
different terms, and also for statistical applications [9, 5].

2. PRELIMINARIES

In Rd
, we fix a compact, convex K with non-empty interior. Points

Xl' X 2 , ••• are generated independently and uniformly in K, yielding the
successive convex hulls Xn=conv{X l , ... , X n }, n= 1,2, .... The expectation
EX n of Xn is a compact, convex subset of K and is conveniently described
in support function terms:

hEX.(u) = max{u')'/)'E EXn }

=Ehx.(u) =Emax{u· Xl' ... , u· X n } Ilull = 1. (2.1 )

For XE K, we define v(x) = min{ vol(K n H) Ix E H, H a half space} and
for e>O K(e): {xEKlv(x)~e}.The associated floating body is K\K(e).

3. FLOATING BODIES AND EXPECTATIONS

Our result comparing floating bodies and expectations is stated in terms
of a natural scaling for the approach of Xn to K.

THEOREM. There are constants 0 < a < b < 00 such that for all n

K(a/n) ~ K\EX n ~ K(b/n). (3.1 )

Before proceeding to the proof, we mention an immediate consequence
of this result (and Theorems 1 and 7 of Barany and Larman [3]).

COROLLARY. There are constants 0 < C 1 < C 2 < 00 such that for all n

(3.2)

We return to this in Remark (3) in Section 4.
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Proof of Theorem. First we arrange a convenient set-up. Given Ilull = 1,
translate K so that 0 E K and u .x ~ 0 \/x E K. Set F(t) = vol {x E K I - u . x ~ I}.
Without loss of generality, assume that vol K = I, so that F is the
distribution function of - u· X, where X is uniformly distributed in K (at
I=T=max{-u,xlxEK}, F(T)=I). Let A(t) stand for the (d-1)­
dimensional volume of the cross-section K n {x E R d I - u . x = I} so that
F(/)=J;jA(s)ds. If O~/*~T and A*=max{A(t)IO~/~/*},we record
the following estimates for 1* ~ 1~ T:

F(t*) ~ A*t

IdA *(/) ~ F(t)

and

(
I )d

F(t) ~ 1* F(t*).

By definition,

h£x.(u) = E max {u .Xl' ..., U. XII} = - E min 1- U. XI' ..., - u· XII}

so that

hK(u)-hEX.(u)=Emin{ -u·X1 , ••• , -u·X,,}

= ( [1-F(t)]11 dl.

(3.3 )

(3.4 )

(3.5 )

(3.6 )

Now we establish (3.1) by estimating (3.6). Let til satisfy F(tll) = lind and
observe that

fT fl'o [I - F( I)r dt ~ 0 [I - F(t)] II dl

t, ( 1 )11~ fa [I - F(t II)r dl = III I - nd .

Applying F(·) and using (3.5) gives



RANDOM CONVEX HULLS 133

(the extreme inequality holding in the exceptional case nd = I by direct
calculation: F(Sb" [1 - F(t)] dt) = (liT) g [1 - (tiT)] dt = 1/2 ~ 1/4). Since
this is independent of u, it follows that K(aln) s:::: K\EX" with a = 1/4d.

For the other inclusion in (3.1), we estimate (3.6) from above:

r[1 - F(t)]" dt =r [1 - F(t)]" dt +r[1 - F(t)]" dt
o 0 In

T [ A * J"~t,,+ r. I-dt dt,

where we have identified t" = t* and used (3.4). Making the change of
variable y = tit", and using (3.3), (3.5), and other estimates, we bound the
integral,

so that

F (C [1 - F( t)]" dt) ~ F( (1 + d 2
) t,,)

1
~ (1 + d 2)d F(t,,) = (1 + d 2)d nd'

It follows that K\EX n s:::: K(bln) with b = (1 + d 2)d (lId). This completes the
proof.

4. REMARKS

(1) With a more detailed analysis, one can show that, for sufficiently
large n, (3.1) holds with b = 10 log d. The interesting question of
(asymptotically) optimal constants however remains open.

(2) A related result for the rate of convergence of the mean width of
EX n to that of (sufficiently smooth) K can be seen in Schneider and
Wieacker [11]. It is enough to observe that by Fubini's theorem the
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expected mean width of Xn , which they treat, IS the same as the mean
width of EX n •

(3) The fact that vol(EX n ) and E vol(X n ) show similar rates of
increase to vol K ((3.2») is of interest from a general point of view. For an
arbitrary random compact, convex set X with expectation EX, there is the
Brunn-Minkowski inequality [14]

voll/d(EX) ~ E voll/d(X)

as well as the usual moment inequality

[Evol X]I!d~EvoI'/d(X).

The question of which is sharper is the obviously same as which of vol(EX)
and E vol(X) is larger. By example either can happen, and while we have
not resolved the issue here, we have at least shown that (for the convex hull
mechanism) they are of comparable size.
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